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ABSTRACT
Non-intrusive load monitoring (NILM) refers to the task of disag-
gregating total household power consumption into the constituent
appliances. In recent years, various neural network (NN) based
approaches have emerged as state-of-the-art for NILM. In conven-
tional settings, NN(s) provide point estimates for appliance power.
In this paper, we explore the question - can we learn models that
tell when they are unsure? Or, in other words, can we learn models
that provide uncertainty estimates? We explore recent advances in
uncertainty for NN(s), evaluate 14 model variants on the publicly
available REDD dataset, and find that our models can accurately
estimate uncertainty without compromising on traditional metrics.
We also find that different appliances in their different states have
varying performance of uncertainty.We also propose "recalibration"
methods and find they can improve the uncertainty estimation.
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1 INTRODUCTION
Non-intrusive load monitoring [9], or NILM, is the technique of
decomposing overall power consumption into constituent appli-
ances. Prior studies [5] suggest that providing appliance-wise en-
ergy consumption can help users potentially reduce their energy
consumption by up to 15%.

Since the seminal work on NILM by George Hart [9], a variety
of algorithms have been proposed in the recent past, including, but
not limited to, time-series models such as additive factorial hidden
Markovmodels [15], discriminative sparse coding [14], graph signal
processing [10]. In 2015, Kelly et al. [13] proposed the application
of neural networks for NILM. Since then, several neural network-
based approaches for NILM have been proposed [12, 20, 24].

Conventional NN approaches for NILM provide point estimates,
i.e. they may say that the fridge power consumption at 10 AM
is 150 Watts. These conventional NN approaches do not quantify
uncertainty. In contrast, a method that can quantify uncertainty
may say that the fridge power at 10 AM is normally distributed with
a mean of 150Watts and a standard deviation of 5Watts. However,if
the model predicted that the fridge power is normally distributed
with a mean of 150 Watts but a high standard deviation of 50 Watts,
it means our model is unsure. The application designer or decision
maker can factor in the uncertainty in predictions before deciding.

Recent literature has looked into methods of quantifying uncer-
tainty in prediction from neural networks [3, 7, 22]. Such methods
have been employed in various applications, including but not lim-
ited to medical imaging[18, 23]. A conventional approach would
apply Bayesian analysis by putting a prior distribution over all
the weights of the NN and then computing the posterior over the
weights and the predictive distribution. However, such an approach
would be computationally intractable [3]. Thus, more recently, vari-
ous approximate inference methods have been proposed for quanti-
fying the uncertainty in NNs. These methods include heteroskedas-
tic NNs where we modify the architecture for regression to include
two output nodes (one for the mean and one for the variance) in-
stead of one output node. Other methods create an ensemble of
NNs and combine the predictions from the individual models to
obtain predictive uncertainty.

Prior literature has proposed a metric called expected calibration
error and reliability diagrams (or calibration curves) to quantify
the “goodness” of the predicted uncertainty (often also called how
well a model is calibrated). We explain a well-calibrated model with
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an example. Suppose our model’s output is a normal distribution’s
mean (𝜇) and standard deviation (𝜎). Now, a 95% credible interval
(CI) would correspond to 2𝜎 , and in a well-calibrated model, 95%
of the data points (ground truth) would lie within the predicted
𝜇 ± 2𝜎 .

In this paper, we implement a total of 14 such model variants
over the state-of-the-art NNs for NILM and evaluate these on three
appliances on the publicly available REDD dataset [16]. We also
propose a “re-calibration” method to improve the uncertainty quan-
tification from our models. We now summarise the main questions
and their answers that we explore in this paper:

(1) Do NNs with uncertainty achieve comparable error on con-
ventional metrics to the baselines?

(a) We find that we can achieve comparable or better perfor-
mance on conventional metrics while additionally incor-
porating the notion of uncertainty.

(2) Are certain appliances or appliance states more prone to
poor calibration?

(a) We find that sparsely used appliances (like a dishwasher)
have poor calibration compared to regularly used appli-
ances (like a fridge).

(3) Can recalibration improve model uncertainty?
(a) We find that for most of our models, our proposed recali-

bration scheme can improve the quantification of model
uncertainty.

The rest of the paper is structured as follows. First, we discuss the
methods of incorporating uncertainty in neural networks and vari-
ous Bayesian approximation methods in Section 2. We also discuss
quantification of predictive uncertainty and recalibration method.
In Section 3, we outline the Seq2Point [3.1] and Bi-LSTM with at-
tention[3.2] architectures which are state-of-the-art architectures
for NILM. We discuss the evaluation in Section 4. We analyse the re-
sults in Section 4.4. After that, in Section 5, we go over prospective
directions for this work before concluding in Section 6.

2 UNCERTAINTY IN NEURAL NETWORKS
We now discuss different architectures and approximate inference
technique to estimate uncertainty in neural networks. We sum-
marise these techniques and architectures in Figure 1. We direct the
reader to recent surveys for an in-depth discussion on the different
methods for estimating uncertainty in neural networks. [7, 22]

2.1 Homoskedastic Neural Networks
Homoskedasticity in the context of machine learning means models
which have the same variance distribution across all input data.
The “regular” neural network models (shown in Figure 1 (a)) or
the linear regression models assume homoskedasticity. Under the
assumption of homoskedasticity, the output from a neural network
is distributed as:

𝑦 ∼ N(𝜇 (𝒙), 𝜎2)
where the variance 𝜎2 is assumed constant. Thus, the loss function
of the model is given by minimising the negative log-likelihood
(equivalent tomaximising the likelihood) under the i.i.d. assumption
is given as:

Loss =
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑁

where 𝑦𝑖 and 𝑦𝑖 denote the ground truth and prediction of the 𝑖𝑡ℎ

(where 𝑖 ∈ {1 · · ·𝑁 }) data point. The prediction of the 𝑖𝑡ℎ data point
(𝒙 𝒊) can be computed by running the forward pass of the neural
network on 𝒙 𝒊 , or, in short, we can write: 𝜇𝑖 = 𝑁𝑁 (𝒙 𝒊). We can see
that minimising the negative log-likelihood naturally leads us to
mean squared error as the cost function. While often not discussed,
one can calculate the maximum likelihood estimate for the variance
𝜎2 term as follows:

𝜎2𝑀𝐿𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑁𝑁 (𝒙 𝒊))2

The loss functions can be optimised using the well-known gra-
dient descent-based approaches. Given the “simplistic” notion of
uncertainty from homoskedastic models, in practice, these models
are treated as models without uncertainty quantification. Following
the usual practice, we do not study the uncertainty estimates from
these models in this paper.

2.2 Heteroskedastic Regression
In contrast to the above discussed homoskedastic regression model,
heteroskedastic regression model (shown in Figure 1 (b)) can learn
different variance for different data points. Thus, in heteroskedastic
model, in addition to estimating 𝜇 (𝒙) as a function of the input,
we also estimate/learn 𝜎 (𝒙) as a function of the input. Similar to
homoskedastic regression, we can define the loss (to be minimised)
as the negative log-likelihood. But, unlike the homoskedastic re-
gression case, we cannot assume 𝜎2 to be constant. Thus, can write
the loss as follows (ignoring constants):

Loss =

∑𝑁
𝑖=1

(
− 1
2 log𝜎

2 − 1
2𝜎2 (𝑦𝑖 − 𝑦𝑖 )2

)
𝑁

(1)

Similar to homoskedastic regression, the loss functions can be
optimised using the well-known gradient descent based approaches.

Both the models discussed thus far consider only the data (or
aleatoric) uncertainty. They do not consider the uncertainty in es-
timating the parameters (or the epistemic) uncertainty. One way
to obtain epistemic uncertainty is by creating an ensemble of mod-
els. We first briefly discuss how we can obtain the prediction and
uncertainty from an ensemble.

2.3 Prediction from an ensemble of NNs
We consider an ensemble of two kinds of models: homoskedas-
tic and heteroskedastic models. If we have an ensemble of 𝑁 ho-
moskedastic NNs and their prediction for an input (obtained via the
forward pass) is given as: 𝜇𝑖 , then the predicted mean and standard
deviation of the ensemble is calculated by:

𝜇ensemble =

∑𝑁
𝑖=1 𝜇𝑖

𝑁
(2)

𝜎ensemble =

√︄∑𝑁
𝑖=1 (𝜇𝑖 − 𝜇ensemble)2

𝑁
(3)

In heteroskedastic regression, for an input datapoint, we predict
two neurons that correspond to mean (𝜇𝑖 ) and sigma (𝜎𝑖 ) ∀𝑖 ∈
{1, · · ·𝑁 }, and the output is a Gaussian (or Normal) distribution.
The ensemble of 𝑁 such models will produce a mixture of Gaussian
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(a) MLP (b) Gaussian MLP (c) Deep Ensemble (d) MC Dropout (e) Bootstrap

Figure 1: Various neural network model architectures for computing uncertainty in predictions

distributions [17]. Under the assumption that each distribution has
an equal weight in the mixture, the resulting mean and sigma are
determined. Calculating the predictive mean is same as equation 2.
The standard deviation of the ensemble is calculated as:

𝜎ensemble (Heteroskedastic) =

√︄∑𝑁
𝑖=1 (𝜎2𝑖 + 𝜇2

𝑖
)

𝑁
− 𝜇2ensemble (4)

In this paper, we have implemented three ensemble methods,
namely Monte Carlo (MC) Dropout, Deep Ensembles and Bootstrap
with Homoskedastic and Heteroskedastic models. We now discuss
these three methods.

2.4 MC Dropout
Monte Carlo Dropout [8] (called MC Dropout from now onwards)
trains a neural network (either homoskedastic or heteroskedastic)
as usual. However, at the time of prediction, it randomly drops out
nodes from the network. The probability of a node being dropped
(or retained) is given as per the Bernoulli distribution. We can
note that the operation of MC Dropout is similar to the regular
dropout considered in the context of reducingmodel overfitting [21].
However, the key difference is the application of dropout at test
time. Every forward pass of the network can drop out different
nodes (given each forward pass accepts a different random seed
as an argument), and result in a different prediction for a given
input, as shown in Figure 1(d). Importantly, the MC dropout method
can be considered as an approximation of Bayesian deep gaussian
processes [8]. Thus, the MC dropout method, though simple has
strong theoretical properties.

2.5 Bootstrap
Bootstrap aggregating is a technique used to reduce the variance
of a machine learning model [4]. It works by training multiple
models on different subsets of the data as in Figure 1(e) and then
averaging the predictions of all the models. This can help reduce
overfitting and improve the overall performance of themodel. Using

the bootstrap method, unlike the MC dropout method we train 𝑁

different models independently, each given a different subset of
the dataset. Thus, the computation and memory requirement for
Bootstrap based method to create an ensemble of NNs is expensive.

2.6 Deep Ensemble
The Deep ensemble method [17] is similar to the bootstrap method
and trains 𝑁 independent models as shown in Figure 1c. The key
difference between the bootstrap and deep ensemble model is that
each model in the ensemble learns over the entire dataset unlike the
bootstrap method The models can be of different types (e.g., differ-
ent neural network architectures), or they can be different instances
of the same type of model (e.g., different random initialisations of
the same architecture).

2.7 Quantifying predictive uncertainty
Having discussed various methods of estimating uncertainty us-
ing neural networks, we now discuss methods to quantify the
“goodness” of the predicted uncertainty (often also called how well
a model is calibrated). We explain a well-calibrated model with
an example in Figure 2. We take a ground truth or true function
𝑓 (𝑥) = 𝑥 sin(𝑥) and learn a probabilistic model (learning the mean
and the standard deviation) over the training data. Then, over the
test data, we plot the 90% confidence interval. For the normal dis-
tribution, 90% CI refers to the 𝜇 ± 1.64𝜎 band. However, we can
see that only 72.5% of the observations fall within the 𝜇 ± 1.64𝜎
band. From here on, we refer to the chosen CI as 𝑝 and the empir-
ically found fraction of points within the band corresponding to
the CI of 𝑝 as 𝑝 . Ideally, we would like 𝑝 to be the same as 𝑝 . In
Figure 3, we show the reliability diagram (or calibration curve) for
the above-mentioned example. From Figure 3, we can note that the
relationship between 𝑝 and 𝑝 , uncalibrated (shown in blue), lies
below the ideal (𝑝 = 𝑝) line. It should be noted that to generate
such a reliability diagram, we choose varying CIs (𝑝) and then find
the corresponding 𝑝 .
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Figure 2: 33% Increase in number of data points lying in 90%
Confidence Interval

The reliability curve can help visually understand quality of the
model’s calibration. We now discuss a quantitative measure called
expected calibration error (ECE) to measure the model calibration.
To compute the ECE, we choose a set of 𝑝 values (say, 0.01, 0.02,
· · · , 0.99 as an example) and compute the corresponding 𝑝 (𝑝) as a
function of 𝑝 . Finally, we can compute the ECE as:

ECE =

∑𝑃
𝑝=1 |𝑝 (𝑝) − 𝑝 |

𝑃

Lower ECE value indicates a better calibration.

2.8 Model Recalibration
We now discuss our proposed method to improve model calibration
or to reduce ECE. We continue working with our above running
example from Figure 2 and Figure 3. We previously discussed: the
uncalibrated (shown in blue) relationship between 𝑝 and 𝑝 lies below
the ideal (𝑝 = 𝑝) line. To improve this relationship, we want for
example 90% CI to correspond to more than the 72.5% points from
the uncalibrated model. Therefore, we learn a function 𝑔 mapping
𝑝 to 𝑝 using Isotonic regression. Isotonic regression is well-suited
for this specific function as it learns monotonically increasing non-
parametric relationship. Finally, at test time, say, we want to get
90% of points within the 90% CI, we find 𝑔(90%), which in this
example would map to a number higher than 90% (in our example
this is: 92.7%) meaning that we need to increase our band in order
to capture approximately 90% of the datapoints. Going from CI of
90% on original model to a CI of 92.7% on the original models means
increasing the band from 𝜇±1.64𝜎 to 𝜇±1.79𝜎 . This in turn, leads to
a 𝑝 = 78%, which is greater than the 𝑝 = 72.5% of the uncalibrated
model (Figure 2). Further, we can repeat this procedure for the
different values of 𝑝 to obtain the improved reliability diagram for
the calibrated model (shown in orange in Figure 3).

An important detail about the recalibration process is that we
fit our NN on the training dataset, recalibrate (or learn the above-
mentioned function 𝑔) on a previously unseen dataset called the
calibration dataset. We split the dataset with 75% training and 25%
calibration dataset. It should also be noted that our recalibration
procedure only changes the model uncertainty (𝜎) without affecting
the mean (𝜇) prediction.

3 NEURAL NETWORKS FOR NILM
We now discuss two state-of-the-art NN methods used for NILM.

0.0 0.2 0.4 0.6 0.8 1.0

p

0.0

0.5

1.0

p̂

Uncalibrated

Calibrated

Ideal

Figure 3: Reliability diagram helps quantify the quality of
our uncertainty estimates

Appliance Training House Number Testing House Number
Fridge 1, 2, 3, 5 6
Dishwasher 1, 3 2
Microwave 1, 3 2

Table 1: The training and test settings for different appliances
for our experiments

3.1 Seq2Point
Seq2Point (S2P) [24] maps a sequence of mains power to a point
appliance power prediction. The NN architecture is composed of a
sequence of 1d convolution filters and dropout. For more details,
we refer the reader to prior research [2, 24].

3.2 BiLSTM with Attention Mechanism
The S2P model while considered the state-of-the-art model, was
known to perform poorly on sparsely used appliances such as dish-
washer and microwave. Recent work [19] have proposed using
bi-directional LSTM models with attention for NILM and have
shown these models to work well even for sparsely used appli-
ances. We direct the reader to prior research for the detailed model
architecture [20].

4 EVALUATION
We now provide the evaluation setup for answering the questions
we raised in the introduction. Our work is fully reproducible. We
provide the code in our repository1.

4.1 Datasets
We have used the publicly available REDD dataset [16] for our
research. The dataset consists of several appliances collected over
several weeks from six different residences. We used information
from three appliances for this study: the refrigerator, dishwasher,
and microwave. Other appliances have far less data, and most fami-
lies do not have access to it. Additionally, the dishwasher and mi-
crowave require human operation and are only occasionally utilised,
whereas the fridge might be regarded a background appliance that
operates without human interaction. Additionally, devices like the
dishwasher frequently function in several modes (drying, heating,
etc.) and demand varied amounts of power draw for these different
states. Furthermore, we downsampled the data for both the mains
and the appliances to a minute frequency using the pre-processing
routines from NILMTK, as done in prior work [20].

1https://github.com/VibhutiBansal-11/NILM_Uncertainty

https://github.com/VibhutiBansal-11/NILM_Uncertainty
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Figure 4: Models incorporating uncertainty such as Het-
eroskedastic S2P with MC dropout (shown in (b)) can achieve
lower MAE than models without uncertainty such as Ho-
moskedastic S2P NN (shown in (a)) for a sparsely used ap-
pliance such as the dishwasher. The S2P NN (a) shows high
false positives (predicting the dishwasher to be ON when it
is actually OFF) in comparison to the Heteroskedastic S2P
MC (b).

4.2 Metrics
We use two different metrics to quantify our model performance.
First, we use the conventional mean absolute error (MAE) metric
defined as following: MAE = 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 −𝑦𝑖 |. Here, 𝑛 is the number

of samples, 𝑦𝑖 is the predicted appliance reading, and 𝑦𝑖 is the
ground truth reading of an appliance. The MAE has been used
across several prior NILM studies[6]. Further, we note that a lower
MAE indicates better performance.

We used expected calibration error (ECE) discussed in Section
2.7 to quantify the uncertainty performance of our model.

4.3 Experimental Setup
Wediscuss the dataset split chosen for training and testing in Table 1.
Our dataset split choice is based on prior literature [20], and on the
basis of availability of the appliance data across these homes. In the
interest of space, we link the hyperparameter space in a dedicated
page in our Github2. Like our dataset split, our hyperparameter
choices was inspired by previous literature [2, 20]. We used 4 X
NVidia A100 GPUs for training our models, and JAX3 and Flax4 for
creating our neural network models. All our models are compatible
in the NILMTK ecosystem [1, 2].

4.4 Results and Analysis
We now present our results based on the questions we raised in
the introduction section of this paper. The main result in Table 2
compares the MAE and the ECE across the different models and
appliances.

2https://github.com/VibhutiBansal-11/NILM_Uncertainty/blob/master/
hyperparameters.md

3https://jax.readthedocs.io
4https://flax.readthedocs.io/en/latest/overview.html

Fridge Dishwasher Microwave

0.2

0.4

E
C

E

Figure 5: The expected calibration error (ECE) quantifying
calibration performance for three appliances across different
models presented in Table 2 is generally lower for the fridge
compared to sparsely used appliances like the dishwasher
and the microwave.

4.4.1 Do NNs with uncertainty achieve comparable error on con-
ventional metrics to the baselines?

We can see from Table 2, that the MAE for the models that pro-
vide uncertainty such as S2P homoskedastic (MC, DE, BS), and
heteroskedastic (NN, MC, DE, BS), is comparable or better than the
baseline (Homoskedastic S2P/LSTM) models that do not incorpo-
rate uncertainty. As an example, the S2P homoskedastic model has
a MAE of 26.16 for the fridge, whereas S2P homoskedastic with DE
achieves a lower MAE of 24.73. Similarly, for the LSTM-based mod-
els, the MAE among model variants with uncertainty is comparable
to the MAE of models without uncertainty. We believe that our find-
ing that we can achieve comparable or better performance on
conventional metrics while additionally incorporating the
notion of uncertainty is an important finding for the community
going forward.

Interestingly, we can significantly reduce the MAE for the dish-
washer by using models incorporating uncertainty. For example,
the S2P homoskedastic NN has a MAE of 12.85 compared to the
improved MAE of 9.26 for the S2P heteroskedastic model with MC
Dropout. We now explain this finding in Fig 4, where we can see
that baselines S2P homoskedastic NN (MAE of 12.85) is better at
predicting the peaks (ground truth) but it is also giving high false
positives (wrongly predicting the dishwasher to be ON when it is
actually OFF) which increases its MAE. While the model incorpo-
rating uncertainty (S2P heteroskedastic MC Dropout with MAE
error of 9.26) does not predict the peaks well but has less false
positives which results in lower MAE. Further, from Fig 4(b), we
can also observe the uncertainty in the prediction (sigma, shown
in green). is higher when the dishwasher changes state from OFF
to ON. Higher uncertainty when an appliance changes state
is expected as the model is likely to be uncertain during the
transition and will likely get more confident once it observes
more samples from the changed state.

4.4.2 Are certain appliances or appliance states more prone to
poor calibration?

From Fig 5 and Table 2, we can observe that the ECE for the fridge is
generally lower than that of sparsely used appliances (dishwasher
and microwave). As discussed earlier, and in prior literature [20],
NILM methods generally perform worse for sparsely used appli-
ances in comparison to appliances such the fridge or air conditioner.

https://github.com/VibhutiBansal-11/NILM_Uncertainty/blob/master/hyperparameters.md
https://github.com/VibhutiBansal-11/NILM_Uncertainty/blob/master/hyperparameters.md
https://jax.readthedocs.io
https://flax.readthedocs.io/en/latest/overview.html
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Fridge Dishwasher Microwave
MAE ECE C.ECE MAE ECE C.ECE MAE ECE C.ECE

Model : S2P

Homoskedastic
NN 26.16 - - 12.85 - - 11.18 - -
MC 26.22 0.25 0.23 12.97 0.48 0.42 11.17 0.47 0.45
DE 24.73 0.26 0.27 12.46 0.43 0.37 11.16 0.43 0.35
BS 24.69 0.24 0.26 11.49 0.06 0.21 11.25 0.30 0.18

Heteroskedastic
NN 26.91 0.13 0.05 9.61 0.19 0.06 12.46 0.03 0.08
MC 26.38 0.03 0.19 9.26 0.16 0.12 12.56 0.05 0.18
DE 26.85 0.04 0.03 9.81 0.13 0.06 12.66 0.20 0.06

BS 26.68 0.07 0.11 10.21 0.43 0.17 13.27 0.22 0.35
Model: LSTM

Homoskedastic
NN 36.51 - - 12.29 - - 16.76 - -
MC 36.57 0.33 0.19 12.29 0.49 0.39 16.77 0.43 0.25

DE 37.05 0.39 0.25 10.33 0.29 0.21 15.60 0.34 0.17
BS 36.66 0.37 0.23 9.99 0.14 0.18 14.80 0.12 0.15

Heteroskedastic
NN 32.80 0.06 0.07 10.07 0.23 0.07 12.61 0.12 0.14
MC 32.83 0.07 0.04 10.11 0.27 0.05 12.61 0.14 0.12
DE 33.38 0.08 0.06 10.07 0.30 0.05 12.81 0.11 0.13
BS 33.16 0.09 0.02 11.12 0.29 0.07 13.06 0.04 0.11

Table 2: Mean absolute error (MAE), Expected Calibration Error pre calibration (ECE) and Expected Calibration Error post
calibration (C. ECE) for three appliances across 16 model variants. The best performing model for each metric has been made
bold and the value of C.ECE has been made italic where the improvement of error (C.ECE - ECE) is maximum

However, our findings suggest that not only is the perfor-
mance in terms of MAE poor for sparsely used appliances,
but, the models with uncertainty also have worse calibra-
tion for sparsely used appliances, in comparison to regularly
used appliances Thus, these models present significant scope in
improving both the MAE as well as calibration performance.

We now discuss the reliability diagram and the predicted power
for the three appliances across a subset of the models. We choose
the models and the plotted time window for illustrative purposes.
However, it should be noted that the reported computed metrics are
for the entire dataset as shown in Table 2.We first discuss the results
for fridge. In Figure 6(a) we observe that the prediction for the
Homoskedastic S2P model with bootstrap matches the ground truth
well, resulting in a low MAE of 24.69. However, the ECE of 0.25 is
high in comparison to other models (as seen from Figure 6(d)). From
the reliability diagram (for now we direct the reader to only study
the curve labelled Total) we can observe that the empirical fraction
of points (𝑝) is below the ideal line (𝑝 = 𝑝 line). This indicates
that the learnt model is over-confident, i.e. the model thinks that

it predicts the mean well and thus needs a low uncertainty band.
However, if the uncertainty of the model were increased, especially
during the fridge ON states (around 07:30 to 08:10 hours, 08:40 to
09:30 hours, and 10:10 to 10:40 hours), the calibration performance
will improve (reduction in ECE).

From Figure 6(b), we can note that the prediction during the ON
state is wrong. However, interestingly, the uncertainty in the pre-
diction (sigma, shown in green) is high, especially during the time
when the prediction is particularly bad. The high uncertainty helps
in achieving a well-calibrated model. We confirm this in Figure 6(e),
where we observe that the empirical fraction of points (for Total
curve) (𝑝) is close to the ideal line (𝑝 = 𝑝 line). From Figure 6(c),
we can observe the predictions for Heteroskedastic LSTM model
are comparable in terms of ECE to Heteroskedastic S2P model with
bootstrap shown in Figure 6(b). However, interestingly, the corre-
sponding calibration curves (Figure 6(e) and (f)) are substantially
different when we consider the calibration curves separately for the
ON and the OFF states. In Figure 6(e), the model is under-confident,
i.e. it predicts a high value of uncertainty for both the ON and the



“I do not know”: Quantifying Uncertainty in Neural Network Based Approaches for Non-Intrusive Load Monitoring BuildSys ’22, November 9–10, 2022, Boston, MA, USA

07
:1

0
07

:4
0

08
:1

0
08

:4
0

09
:1

0
09

:4
0

10
:1

0
10

:4
0

11
:1

0

(a)

0

100

P
ow

er
(W

)

Homo S2P BS
MAE = 24.69, ECE = 0.25

Ground Truth

07
:1

0
07

:4
0

08
:1

0
08

:4
0

09
:1

0
09

:4
0

10
:1

0
10

:4
0

11
:1

0

(b)

Hetero S2P BS
MAE = 26.69, ECE = 0.07

Mean

07
:1

0
07

:4
0

08
:1

0
08

:4
0

09
:1

0
09

:4
0

10
:1

0
10

:4
0

11
:1

0

(c)

Hetero LSTM NN
MAE = 32.81, ECE = 0.06

Sigma

0.00 0.25 0.50 0.75 1.00

p
(d)

0.0

0.5

1.0

p̂

On ECE = 0.3306
Off ECE = 0.1621

Total

Off

On

Ideal

0.00 0.25 0.50 0.75 1.00

p
(e)

On ECE = 0.0129
Off ECE = 0.1560

0.00 0.25 0.50 0.75 1.00

p
(f)

On ECE = 0.2123
Off ECE = 0.1025

Figure 6: Predicted power and reliability diagrams for fridge across different models (a) Homoskedastic S2P model with
bootstrap showing the best MAE (lowest) (b) Heteroskedastic S2P model with bootstrap showing a comparitively low MAE but
low ECE (c) Heteroskedastic LSTM model showing a high MAE but low ECE
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Figure 7: Predicted power and reliability diagrams for dish washer across different models (a) Heteroskedastic S2P model with
deep ensemble showing the low MAE (b) Homoskedastic LSTM model with bootstrap showing a high MAE and high ECE but
low ECE for ON-state (c) Homoskedastic S2P model with bootstrap showing a high MAE but best ECE (lowest)

OFF states. However, in Figure 6(f), the model is over-confident
for the OFF state and under-confident for the ON state. These find-
ings highlight that different appliance states can have highly
varying calibration curves, and we can achieve an overall low
calibration error if the individual states calibration errors
cancel out each other.

We now discuss the calibration and predicted power for dish-
washer. The homoskedastic S2P BS (Figure 7(c) and (f)) ECE value

is low, corresponding to 0.06 but we are unable to obtain an uncer-
tainty estimate that can capture the ON state ground truth within
an appropriate confidence interval because the model is overconfi-
dent in this state. However, as the data is largely biased towards the
OFF state, the final ECE values are low and the Total 𝑝 is close to the
𝑝 = 𝑝 line. Similarly, for the heteroskedastic S2P DE (Figure 7(a) and
(d)). In contrast, in Figure 7(b) for the homoskedastic LSTM with
bootstrap model, the ECE is comparable (0.14) to homoskedastic
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Figure 8: Predicted power and reliability diagrams for microwave across different models (a) Homoskedastic S2P model with
deep ensemble showing the best MAE (lowest) (b) homoskedastic LSTMmodel with bootstrap showing a high MAE but low
ECE (trade-off) (c) Heteroskedastic S2P model showing a high MAE but best ECE (lowest)

S2P BS (Figure 7(c)). However, the model is doing a better job at pre-
dicting the second peak (around 11:10 to 11:40 hours). Furthermore,
the uncertainty (sigma, shown in green) increases on the right side
of the second peak (around 11:40 hours), where the predicted power
deviates from the ground truth. We confirm from Figure 7(e), that
indeed for homoskedastic LSTM model with bootstrap, the ECE for
the ON state is better than the other compared models. This leads
us to our next learning: A good ECE may hide the imbalance
between the different states, and for a thorough analysis, it
is recommended to consider the state-wise ECE.

Our findings on similar experiments done on the microwave
(Figure 8) are comparable to the findings for fridge and dishwasher.
Importantly, as expected, estimating the uncertainty accurately
(low ECE) for the ON state for sparse appliances like dish-
washer and microwave is non-trivial. Overall, from the above
experiments, we can conclude that there is an important trade-
off between the two considered metrics: MAE and ECE, and
different applicationsmay call for a nuanced choice ofmetric
for evaluating performance.

4.4.3 Can recalibration improve model uncertainty?

We applied our isotonic regression-based recalibration approach
previously discussed in Section 2.7. From Table 2, we note that the
ECE post calibration (C.ECE) improves (reduces) for most models in
comparison to the ECE before calibration. We now dive deeper into
some specific illustrative examples to show the effect of recalibra-
tion on the three appliances. We use the 95% confidence interval (CI)
for our experiments. First, in Figure 9(a) we can observe that S2P
homoskedastic MC model originally had 65% of points (𝑝 = 0.65)
in 95% confidence interval (𝑝 = 0.95) which is visibly improved
after recalibration to 80% (𝑝 = 0.80) in Figure 9(b). We can further
confirm from Figure 9(c) that the reliability diagram improves post-
calibration. Importantly, we can note from Figure 9(b) that a much

higher proportion of the observation during the ON state (07:30 to
08:10) now fall within the CI, in comparison to Figure 9(a).

Similarly, for the dishwasher (Figure 10) and microwave (Fig-
ure 11) there is an improvement in model uncertainty as quantified
by the reduction of the gap between 𝑝 and 𝑝 . We may also note
from Figure 10 and Figure 11, that the uncertainty quantification
improves for both the ON and the OFF states. However, quantifying
uncertainty for the ON state even post calibration has a significant
scope for improvement.

We now analyse why ECE can increase post calibration for some
models and appliances as shown in Table 2. This trend can be
attributed to the contrasting nature of confidence of the calibration
set and test set. We can see from Figure 12(a) that 90% of points lie
in 95% CI before calibration for the fridge for heteroskedastic S2P
MC dropout model. Instead of increasing from 90 to 95% (ideally)
post calibration, we observe only 84% points which is worse and
hence increases the test ECE as seen in Figure 13(b). The calibration
set curve before calibration was under confident (above the ideal
line), as seen in Figure 13. Thus, to match the ideal curve, post
calibration, the 𝑝 would be reduced for the same value of 𝑝 . On the
contrary, the model before calibration was overconfident on the test
set, where 𝑝 was below the ideal curve. Thus, recalibration further
pushes down 𝑝 making the ECE worse. We can thus conclude that
good recalibration requires similar characteristics between
the calibration and the test set.

5 LIMITATIONS, DISCUSSION AND FUTURE
WORK

(1) In the future we plan to study performance of the 14 model
variants on more datasets and appliances.

(2) In this paper we assumed normal distribution (as is the stan-
dard in the machine learning community). In the future, we
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Figure 9: Effect of recalibration on fridge for homoskedastic S2P MC dropout model: (a) Corresponding to the 95% confidence
interval, our uncalibrated model has only 65% of the observed data points; (b) the calibrated model in contrast has a higher
fraction of 80% points; (c) the reliability diagram showing the improvement in uncertainty quantification post calibration.
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plan to study likelihoods such as log-normal distribution to
strictly enforce non-negativity.

(3) In this paper we presented several approximate inference
methods like Deep Ensemble, MC Dropout and Bootstrap-
ping to obtain uncertainty.Whilewe also evaluated onMarkov
Chain Monte Carlo (MCMC) based methods (where methods
like NUTS [11]) on NILM data, we did not report the results
as the experiments are significantly more time consuming.
However, in the future, we plan to compare our methods
proposed in this paper to MCMC based methods too.

(4) We discussed that the different characteristics of the cali-
bration and test set can result in recalibration making the
uncertainty performance worse. In the future, we plan to
study techniques to understand the suitability of a given
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calibration set to improve the uncertainty performance on
an unseen test dataset.

(5) In NILM applications, the data distribution can drift over
time owing to reasons such as: i) changes in weather condi-
tions; ii) appliance wear and tear; iii) change in operational
usage; etc. OOD examples are unlikely to contain the same
patterns as training distribution examples. This may limit the
generalization ability. Thus, in the future, we plan to study
the uncertainty quantification for the out of distribution
(O.O.D.) setting.

6 CONCLUSIONS
NNmethods have proven to be the state-of-the-art models for NILM.
In this paper, we have shown how to adapt existing architectures
to provide predictive uncertainty. We took a NILM specific flavour
to our work and discuss our findings in the NILM context. As an
example, we showed that calibration needs to be studied separately
for different states of an appliance. Finally, we have highlighted the
shortcomings of existing approaches to quantify uncertainty. We
hope this paper opens discussions in the NILM and the BuildSys
community around predictive uncertainty.
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